These findings suggest that patient-specific iPS cells may provide molecular insights into complex transcriptional and epigenetic mechanisms, at least in part, through combinatorial expression of NKX2-5, HAND1, and NOTCH1 that coordinately contribute to cardiac malformations in HLHS.
In the TOF patients, we found four copy number gains affecting three genes, of which two are important regulators of heart development (NOTCH1, ISL1) and one is located in a region associated with cardiac malformations (PRODH at 22q11).
We recently identified missense variants in the NOTCH1 receptor in patients with diverse left ventricular outflow tract (LVOT) malformations (NOTCH1(G661S) and NOTCH1(A683T)) that reduce ligand-induced Notch signaling.
This finding was supported by the discovery of a NOTCH1 frameshift mutation in an unrelated family with similar aortic valve disease, suggesting that NOTCH1 haploinsufficiency was a genetic cause of aortic valve malformations and calcification.
These results suggest that NOTCH1 mutations cause an early developmental defect in the aortic valve and a later de-repression of calcium deposition that causes progressive aortic valve disease.